Der etwas bessere CMemDC

CMemDC aus dem Artikel Flicker free drawing with MFC ist wohl der Klassiker für Doublebuffering und ist wohl jedem MFC Entwickler bekannt.

Er macht was er soll und ich habe ihn selbst über Jahre hinweg unverändert verwendet. Solange man einfache Sachen macht und ausschließlich den MM_TEXT Mappingmode verwendet ist alles OK.
Hat man sich aber was spezielles – zoomfähiges – zusammengebaut mit MM_ANISOTROPIC dann funktioniert das Ganze nicht mehr, weil Keith an den Window Origin Koordinaten dreht und nicht am Viewport.

Meine abgewandelte Variante trägt einer entsprechende Verwendung auch für andere Mappingmodes Rechnung. Es müsste IMHO für jeden funktionieren. Intensiv getestet habe ich es mit MM_ANISOTROPIC.

Will/muss man auch an den Viewport Koordinaten drehen, dann sollten die alten Viewport Koordinaten gelesen werden und dann entsprechend durch ein Offset geändert werden.
Alles anderen Werte wie die Extents können beliebig verändert werden.
Bei der Verwendung sollte MM_TEXT eingeschaltet sein (entsprechende ASSERTs habe ich ergänzt). MM_TEXT ist normalerweise gesetzt, wenn CMemDC direkt nach Instanzierung des CPaintDC zum Einsatz kommt. Der Destruktor setzt dann den Mappingmode auf MM_TEXT zurück.

Dieser neue, modifizierte CMemDC kann einfach die bisherige Implementierung ersetzen.

Have fun & Happy coding 🙂

class CMemDC : public CDC
{
public:
  // constructor sets up the memory DC
  CMemDC(CDC* pDC)
    : CDC()
    , m_pDC(pDC)
    , m_pOldBitmap(NULL)
    , m_bMemDC(!m_pDC->IsPrinting())
  {
    ASSERT(pDC != NULL);

    if (m_bMemDC)
    {
      // Create a Memory DC.
      // At this moment we should have mapping mode text
      ASSERT(m_pDC->GetMapMode()==MM_TEXT);
      ASSERT(m_pDC->GetWindowOrg()==CPoint(0,0));
      ASSERT(m_pDC->GetViewportOrg()==CPoint(0,0));

      // Get the clip box and create bitmap for this size
      m_pDC->GetClipBox(&m_rect);
      CreateCompatibleDC(m_pDC);
      m_bitmap.CreateCompatibleBitmap(m_pDC, 
              m_rect.Width(), m_rect.Height());
      m_pOldBitmap = SelectObject(&m_bitmap);

      // Adjust the view port so that we hit the clip rect.
      SetViewportOrg(-m_rect.left, -m_rect.top);
      IntersectClipRect(m_rect);

      // Fill background in case the user has overridden
      // WM_ERASEBKGND.  We end up with garbage otherwise.
      FillSolidRect(m_rect, m_pDC->GetBkColor());
    }
    else
    {
      // Make a copy of the relevant parts of the current DC for printing
      m_bPrinting = m_pDC->m_bPrinting;
      m_hDC     = m_pDC->m_hDC;
      m_hAttribDC = m_pDC->m_hAttribDC;
    }
  }

  // Destructor copies the contents of the mem DC to the original DC
  ~CMemDC()
  {
    if (m_bMemDC)
    {
      // The mapping mode might effect the BitBlt. So we need to return to
      // MM_TEXT. This makes m_rect.left and m_rect.top again the
      // coordinates of our clipped rectangle. And to make sure that the
      // coordinates are really used we just clear the ViewportOrg and the
      // WindowOrg
      SetMapMode(MM_TEXT);
      SetViewportOrg(0,0);
      SetWindowOrg(0,0);

      // Copy the off screen bitmap onto the screen.
      // For this we just make sure that we really target the rectangle of
      // our temporal bitmap.
      m_pDC->BitBlt(m_rect.left, m_rect.top, 
              m_rect.Width(), m_rect.Height(),
              this, 0, 0, SRCCOPY);

      //Swap back the original bitmap.
      SelectObject(m_pOldBitmap);
    }
    else
    {
      // All we need to do is replace the DC with an illegal value,
      // this keeps us from accidentally deleting the handles associated
      // with the CDC that was passed to the constructor.
      m_hDC = m_hAttribDC = NULL;
    }
  }

  // Allow usage as a pointer
  CMemDC* operator->()  {   return this;  }

  // Allow usage as a pointer
  operator CMemDC*()  {   return this;  }

private:
  CBitmap  m_bitmap;    // Offscreen bitmap
  CBitmap* m_pOldBitmap;  // bitmap originally found in CMemDC
  CDC*   m_pDC;     // Saves CDC passed in constructor
  CRect  m_rect;    // Rectangle of drawing area.
  bool   m_bMemDC;    // true if CDC really is a Memory DC.
};

Externe und interne COM Zugriffe unterscheiden

Ich benutze als interne Makrosprache gerne VBScript. D.h. ich hoste VBScript.
Ich biete dann bestimmte COM-Objekte (IDisptach) an, die es dem Nutzer erlauben mein  Programm anzupassen oder intern zu steuern.

Nun macht es aber unter Umständen einen gravierenden Unterschied, ob ein COM-Objekt von einem programminternen Nutzer, oder von extern angesprochen wird. Intern möchte ich zum Beispiel mehr  oder andere Funktionen erlauben als durch einen externen Zugriff von einem anderen Programm oder Skript.

Wie kann man aber unterscheiden von wo ein COM Zugriff erfolgt ❓

Netterweise hat COM die Funktion CoGetCallContext, die mir genau diese Info liefert. Liefert CoGetCallContext S_OK und damit einen Interfacezeiger auf IServerSecurity, dann wurde der COM Zugriff von einem externen Prozess abgesetzt. Wenn CoGetCallObject E_NOINTERFACE zurück gibt haben wir einen internen Aufruf aus dem eigenen Prozess heraus.

bool IsExternalComCall()
{
 // get context
 CComPtr<IServerSecurity> spSecurity;
 HRESULT hr = ::CoGetCallContext(IID_IServerSecurity,
                      reinterpret_cast<void**>(&spSecurity));
 return SUCCEEDED(hr);
}

Herzlichen Dank an René König für diesen Ansatz, den er mir in microsoft.public.de.vc gab.

Aus zwei mach eins: Wie man zwei Cursor kombinieren kann

Wer komplexere UIs baut, der kommt um Drag&Drop oder andere Extrafunktionen mit der Maus nicht herum. Um den Benutzer gut zu unterstützen verwendet man natürlich auch spezielle Cursor.
Auffällig ist aber oft genug der Unterschied zwischen den schönen Standardzeigern im 3D-Stil und den oft flachen Zeigern, die gerade mal zusätzlich ein Plus oder ein Stoppzeichen tragen. Oder ganz und gar der Unterschied , wenn man eigene Cursorstile verwendet, wie z.B. Dirigent oder Hände.

Ich habe mich bei meinem aktuellen Projekt gefragt, warum man eigentlich nicht den aktuellen Standard-Cursor verwendet und diesen zusätzlich mit dem entsprechenden Symbol versieht (Pluszeichen, Stopp, Dragframe etc). Das würde besser aussehen und Arbeit sparen, weil man sich nur noch Gedanken um die Extrasymbolik machen muss und der Benutzer behält seinen eingestellten normalen Cursor.

Schaut man sich den Explorer unter XP+Vista an, dann macht man die Entdeckung, dass der es genauso macht. Der aktuelle Cursor wird beim Drag&Drop Vorgang um ein Stopp- oder Pluszeichen ergänzt.

Warum es also nicht selber auch so machen ❓

Meine Suche im Internet zu diesem Thema: „Wie kombiniert man zwei Cursor zu einem?“, war nicht von Erfolg gekrönt. Beispielcode dazu habe ich nicht gefunden. Aber auch wirklich gar nichts.
Also selbst Hand anlegen.

Bei meinem ersten Versuch wollte ich die Cursor-Bitmaps direkt manipulieren. Bei meiner Untersuchung und dem ersten Democode wurde klar, dass Windows gar keinen Unterschied mehr zwischen Icons und Cursor macht. Erstaunlich ❗ Ob Icon oder Cursor spielt eigentlich keine Rolle. HCURSOR und HICON sind identische Typedefs. Also egal ob toller Farbcursor oder monochromer Cursor, alles gleich.
Mit dieser Entdeckung nahm ich schnell Abstand von BitBlt und Konsorten und verwendete eine Imagelist, die genau diese Funktion des Overlays von Symbolen bereits unterstützt und zudem auch noch perfekt mit Icons umgehen kann.

Herausgekommen ist der folgende Code, der es erlaubt zwei Icons, oder Cursor zu überlagern und ein neues Icon oder einen neuen Cursor zu erzeugen.

Man muss sich aso nur mit LoadCursor, den aktuellen Cursor laden und kann diesen damit ganz einfach modifzieren. Nicht vergessen: Das erzeugte Icon/Cursor muss allerdings mit DestroyIcon auch wieder entsorgt werden. Das Ganze habe ich der Einfachheit halber mit MFC Funktionen geschrieben, aber das Ganze in pure WinAPI zu transformieren dürfte nicht schwer sein. 😉

 Hier nun der Code. Have fun!

HICON CombineIcons(HICON hIcon1, HICON hIcon2)
{
 // Remember that HCURSOR and HICON are identical!
 // hIcon1 is overlayed by hIcon2.
 // hIcon2 isn't adjusted in size or position.
 // It just overlays hIcon1
 // Get bitmaps of icon 1
 ICONINFO iconInfo;
 ::ZeroMemory(&iconInfo,sizeof(iconInfo));
 if (!GetIconInfo(hIcon1,&iconInfo))
  return NULL;

 // Attach the bitmaps to get them automatically freed
 // upon error.
 CBitmap bitmap, mask;
 bitmap.Attach(iconInfo.hbmColor);
 mask.Attach(iconInfo.hbmMask);

 // Get size and width
 BITMAP bm;
 if (bitmap.m_hObject)
  bitmap.GetObject(sizeof(bm),&bm);
 else
  mask.GetObject(sizeof(bm),&bm);

 // Get the color depth from the icon and create an image list
 // Remember we need a
 UINT flags = 0;
 switch (bm.bmBitsPixel)
 {
 case 4:  flags = ILC_COLOR4;  break;
 case 8:  flags = ILC_COLOR8;  break;
 case 16: flags = ILC_COLOR16; break;
 case 24: flags = ILC_COLOR24; break;
 case 32: flags = ILC_COLOR32; break;
 default: flags = ILC_COLOR4;  break;  
 }
 CImageList il;
 // be ware that the monochrom cursor bitmap is twice the height
 if (!il.Create(bm.bmWidth,
      bm.bmHeight/(iconInfo.hbmColor!=NULL ? 1 : 2),
      ILC_MASK|flags,2,2))
  return NULL;

 // Load the both icons into the image list
 il.Add(hIcon1);
 il.Add(hIcon2);

 // Define the second icon as an overlay image
 il.SetOverlayImage(1,1);

 // Get a new icon with icon 2 overlayed
 HICON hCombined = ImageList_GetIcon(il.m_hImageList,0,
              ILD_NORMAL|INDEXTOOVERLAYMASK(1));
 if (!hCombined)
  return NULL;

 // Need the icon infos for this new icon
 ICONINFO iconInfoCombined;
 ::ZeroMemory(&iconInfoCombined,sizeof(iconInfo));
 if (!GetIconInfo(hCombined,&iconInfoCombined))
  return NULL;

 // Destroy the combined icon, we just have the bitmap and the mask
 ::DestroyIcon(hCombined);

 // Get the bitmaps into objects to get them automatically freed
 CBitmap bitmapCombined, maskCombined;
 bitmapCombined.Attach(iconInfo.hbmColor);
 maskCombined.Attach(iconInfo.hbmMask);

 // Get the hotspotinto and cursor data from
 // the ICONINFO of hCursor1
 iconInfoCombined.fIcon = iconInfo.fIcon;
 iconInfoCombined.xHotspot = iconInfo.xHotspot;
 iconInfoCombined.yHotspot = iconInfo.yHotspot;

 // OK we have can create a new Cursor out of the target
 // Don't forget to use DestroyIcon for the new Cursor/Icon
 return ::CreateIconIndirect(&iconInfoCombined);
}

VS Tipps & Tricks: Heap Bugs finden (Teil 4)

In meine ersten Artikeln über Heap-Bugs habe ich bereits erwähnt, dass die CRT aber auch Windows selbst Speicher unter bestimmten Umständen vorbelegt bzw. beim Freigeben des Speichers mit einem festen Wert löscht.

Für einen Entwickler ist es gut zu wissen welche Werte durch wen gesetzt werden. Zudem erleichtert einem dieses Wissen auch das Debuggen und die Identifikation von Problemen im Zusammenhang mit dem Heap, deshalb habe ich hier mal diese Magic-Bytes, die von Microsoft verwendet werden hier zusammengetragen.

Würde man im Debugger zum Beispiel eine Variable mit dem Wert 0xCCCCCCCC entdecken, dann ist davon auszugehen, dass man diese Variable auf dem Stack nicht initialisiert hat.

  • 0xABABABAB
    Wird von HeapAlloc als Wert für die Guard Bytes („no man’s land“) vor und hinter Speicherblöcken verwendet.
  • 0xBAADF00D
    Wird von LocalAlloc(LMEM_FIXED) verwendet um nicht nicht initialisierten Speicher im Heap zu kennzeichnen.
  • 0xCCCCCCCC
    Wird von der Debug-CRT verwendet um nicht initialisierten Stack zu kennzeichnen.
  • 0xCDCDCDCD
    Wird von der Debug-CRT verwendet um nicht initialisierten Speicher im Heap zu kennzeichnen.
  • 0xDDDDDDDD
    Wird von der Debug-CRT verwendet um freigegebenen Speicher im Heap zu kennzeichnen.
  • 0xFDFDFDFD
    Wird von vom Debug-Heap verwendet für Guard Bytes („no man’s land“), vor und hinter Speicherblöcken.
  • 0xFEEEFEEE
    Wird von HeapFree() verwendet um freigegebenen Speicher zu kennzeichnen.

Siehe auch: http://en.wikipedia.org/wiki/Magic_number_(programming)

CFileDialog öffnet unter Umständen nicht

Ein Problem bei einem Kunden hat mich ins ungläubige Staunen getrieben.
Wir haben in einem Einstellungsdialog ein Edit Control für einen Dateinamen. Dazu einen simplen Schalter mit dem man einen CFileDialog öffnet und die Datei so auswählen kann. Bei einem Kunden wollte aber der Dialog in einigen Fällen nicht öffnen, der Klick auf den Schalter blieb ohne Wirkung. Da der entsprechende Code so simpel war, kam ein Programmfehler kaum in Frage.

Nachdem ich mir einen Screenshot habe senden lassen, staunte ich nicht schlecht, denn ich konnte den Fehler mit gleichen Eingaben zuerst nicht nachvollziehen, denn ich nutzte Vista und der Kunde hatte XP SP2. Sobald ich aber unter XP die selben Vorgaben machte, trat der Fehler auch bei mir auf.

Es scheint ein Bug in den Common Dialogs zu sein. Ist der Dateiname, den man im zweiten Parameter von CFileDialog angibt (vorschlägt) in bestimmter Weise „ungültig“, dann öffnet der Dialog nicht. Der Rückgabewert ist IDCANCEL (2) und CommDlgExtendedError liefert FNERR_INVALIDFILENAME. Ungültig ist aber fast zu viel gesagt, denn der Pfad enthielt an einer Stelle nur einfach 2 Backslashes statt einen, wie üblich.

Einfach nachzuvollziehen mit dem folgenden Snippet:

// Preset filename with a double backslash in the path:
// C:\TEMP\\Schrott.txt
CFileDialog dlg(TRUE,_T("txt"),_T("C:\\TEMP\\\\Schrott.txt"),
            OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT,
            _T("Text files|*.txt|All files|*.*||"));
INT_PTR iResult = dlg.DoModal();
DWORD dwLastError = GetLastError();
DWORD dwCommLastError = CommDlgExtendedError();

CString strResult;
strResult.Format(_T("Returncode %d, Lasterror 0x%08X, CommLastError 0x%08X"),
            iResult,dwLastError,dwCommLastError);
AfxMessageBox(strResult);

Eigentlich nur verwunderlich, denn der Name selbst mit doppelten Backslashes wird vom Dateisystem sonst überall akzeptiert. Man kann eine Datei mit dem Namen öffnen, lesen und schreiben. Nur CFileDialog mag ihn nicht. Oder besser der Standard-Common-File-Dialog mag ihn nicht.

Bleibt die Frage warum ich unter Vista den Fehler nicht bekam?

Nutzt man VS-2008 und lässt das Programm unter Vista laufen, dann ist auch alles wieder gut. Denn unter Vista benutzt Der CFileDialog ein neues Interface (Common Item Dialog) und nicht mehr den normalen Common-File-Dialog. Die neuen in die MFC gewrappten Dateidialoge von Vista können mit dieser Vorgabe umgehen.
Lässt man das gleiche Programm wieder unter XP SP2 laufen, bekommt man den entsprechenden Fehler wieder, da in diesem Fall wieder die Standard-Common-Dialoge verwendet werden.

WinMain mit argc und argv

Mit WinMain / wWinMain / _tWinMain bekommt man einen Zeiger auf Befehlszeile frei Haus mitgeliefert als lpCmdLine. Es ist nicht schwer Code u schreiben um diese Zeile zu interpretieren. Die MFC stellt dazu eine eigene Klasse mit dem Namen CCommandLineInfo. Manchmal wäre es aber auch einfach nur schön wie bei einem simplen C/C++-Konsolenprogramm argc und argv zur Verfügung zu haben, die an main / wmain / _tmain übergeben werden. Leider werden die aber an die Startfunktion nicht übergeben. (Diese Frage taucht auch nicht selten in den Communities auf).

Versteckt in der CRT gibt es argc und argv aber immer, egal ob Konsolen- oder UI-Programm. Der Startup-Code der CRT initialisiert diese Werte immer und sie stehen als globale Variablen unter den Namen __argc und __argv bzw. __argvw zur Verfügung. Man muss nur einen #include aud stdlib.h machen und schon stehen diese Werte zur Verfügung.
Ist das Programm ein Unicode Programm ist der Array __argvw initialisiert und __argv ist NULL. Ist das Programm ein MBCS Programm dann ist __argv gefüllt und __argvw ist NULL. Entsprechend ist __targv in tchar.h definiert. (Geändert nach Kommentar von Marcus Humann am 10.09.08)

Mit __argc / __argv / __argvw / __targv kann man nun ganz leicht die Befehlszeile frei verarbeiten, wie man es gewohnt ist, auch wenn man ein Windows-GUI Programm erstellt, oder die MFC benutzt.

Das ist zwar nicht dokumentiert, aber seit VC6 bis zur aktuellen Version VC-20008 hat sich nichts geändert.

VS Tipps & Tricks: Heap Bugs finden (Teil 3)

Mancher Bug macht einem nicht den Gefallen und lässt sich in der Debug-Version finden. Ursache ist oft genug eine Variable, die in der Debug-Version initialisiert (0xCC) wird aber in der Release-Version zu einem Crash führt, wenn zufällige Daten auf dem Stack für undefiniertes Verhalten sorgen.

Also macht man sich an das debuggen der Release Version und kann keinen Fehler finden.
Kaum startet man das Programm ohne Debugger dann kracht es wieder. Warum?

Manch einer könnte jetzt denken: Der Debugger verändert das Memory Layout! Das tut er schon, aber entscheidend für ein anderes Verhalten ist der Debug Heap!
Die wenigsten Entwickler wissen überhaupt, dass es ihn gibt. Ich meine hier nicht die Debug Funktionen, die die CRT zur Verfügung stellt, denn mein Thema heute ist ja das Debuggen eines Release-Programms, und die Debug-CRT hat ja bekanntlich in einem Release Programm nichts zu suchen!

Machen wir es praktisch und nehmen wieder mein kleines Crashtest-Programm:

#include <windows.h>
#include <tchar.h>
#include <crtdbg.h>
int _tmain(int argc, _TCHAR* argv[])
{
  char *pCorrupt = new char[100];
  ZeroMemory(pCorrupt,104);
  char *pOther = new char[100];
  ZeroMemory(pOther,100);
  delete [] pOther;
  delete [] pCorrupt;
  return 0;
}

Wenn wir dieses Programm als Release Version kompilieren und ausführen, dann erhalten wir keine Fehlermeldung ❗ Interessant. Der Heap ist nicht soweit zerstört, dass es zu einer Zugriffsverletzung kommt. Starten wir aber unser Programm mit dem Debugger, dann wird der so genannte Debug Heap des Systems verwendet, der wie die Debug-CRT Guardbytes setzt und kontrolliert.

Ein weiteres Problem entsteht dadurch, dass der Debug Heap den allokierten Speicher auf feste Werte initialisiert genau wie die Debugversion der CRT. Wenn also nicht initialisierter Speicher genutzt wird, dann ist das Verhalten mit dem Debug-Heap deterministisch, ohne Debug Heap eher zufällig.

Das im Debugger alles etwas anders sein kann ist sogar dokumentiert 😉

Processes that the debugger creates (also known as spawned processes) behave slightly differently than processes that the debugger does not create.
Instead of using the standard heap API, processes that the debugger creates use a special debug heap. On Microsoft Windows XP and later versions of Windows, you can force a spawned process to use the standard heap instead of the debug heap by using the _NO_DEBUG_HEAP environment variable or the -hd command-line option.

In diesem Text steht auch, wie man den Debug-Heap ausschalten kann, mit:

SETX _NO_DEBUG_HEAP 1

Diese Environment-Variable sorgt dafür, dass sich auch bei geladenem Debugger, das Programm so verhält wie ohne Debugger (hoffentlich). Führt man mein Testprogramm nun im Debugger aus, wenn die Environment-Variable _NO_DEBUG_HEAP auf 1 gesetzt ist, erhält man keinen Debug-Break mehr. Denn in diesem Fall gibt es keine Guardbytes, die geprüft werden.
Löscht man den Eintrag _NO_DEBUG_HEAP wieder, dann erhält man im Debugger wieder wie erwartet einen Break.

Will man also wirklich realitätsnah eine Release-Version debuggen, dann kommt man um das Ausschalten des Debug-Heaps nicht herum.

PS: Man kann es auch etwas einfacher haben, wenn man sich nachträglich an den Prozess mit dem Debugger attached (wenn das geht). Ideal ist dieses Verfahren auch beim Remote-Debugging (dazu demnächst mehr).

VS Tipps & Tricks: Heap Bugs finden (Teil 2)

Einige Hilfsmittel um einen Heap-Fehler zu finden habe ich in meinem letzten Beitrag ja beschrieben.

Eigentlich wünscht sich der Entwickler nichts mehr, als dass ein falscher Zugriff auf den Heap, sofort einen Break im Debugger auslöst. Die Methoden, die ich bisher gezeigt habe (AfxCheckMemory, _CrtCheckMemory, _CrtSetDbgFlag) können das nicht direkt , aber zumindest helfen sie den Fehler einzukreisen.

Ein unverzichtbarer Helfer, der sofort solch einen Break auslösen kann, ist der Application Verifier, den ich bereits in einem älteren Artikel als Freund und Helfer vorgestellt habe.

Seit Visual Studio 2005 kann man direkt Parameter für den Application Verifier im Projekt einstellen und auch direkt den Debug-Prozess mit dem Application Verifier starten (Umschalt+Alt+F5).
An den Standardeinstellungen im Projekt braucht man hier gar nichts zu ändern:
Conserve Memory – No
Protection Location – Je nach Testfall (man sollte mit beiden Einstellungen mal debuggen)
Alle anderen Einstellungen Verification Layers Settings – auf Enable

Mit dem Application Verifier lässt sich der so genannte Paged Heap nutzen, der Guard Pages anlegt hinter oder vor den allokierten Speicherbereichen (siehe auch GFLAGS.EXE). Der Vorteil: Man erhält sofort eine Access Violation, wenn man den Speicherbereich überschreitet.

Mein kleines Demoproramm

#include <windows.h>
#include <tchar.h>
#include <crtdbg.h>
int _tmain(int argc, _TCHAR* argv[])
{
  char *pCorrupt = new char[100];
  ZeroMemory(pCorrupt,106); // -- This will corrupt the heap
  char *pOther = new char[100];
  ZeroMemory(pOther,100);
  delete [] pOther;
  delete [] pCorrupt;
  return 0;
}

crashed mit der Nutzung des Application Verifiers sofort und man kann im Call Stack die Zeile 7 ausmachen.
Genial ist besonders, dass der Application Verifier auch mit der Release Version sofort die Zeile 7 als Ursache identifiziert. Gerade wenn man also nicht auf die Debug-CRT zurückgreifen kann, ist der Application Verifier ein super Hilfsmittel.

Der Nachteil: Die Guard Pages liegen nicht exakt und direkt hinter dem allokierten Bereich, sondern auf der nächsten Page Boundary. Deshalb crashed mein Sample auch nicht wenn man den Speicher um nur 1 Byte überschreitet.

Aber der Application Verifier ist zum Testen ein absolutes Muss, weil auch falsche Handles erkannt werden und auch der Lock Verfification Layer für die Qualitätssicherung einfach nützlich zum entwanzen sind. (siehe auch Application Verifier Einstellungen in der MSDN).

Hinweis ❗

Auf Windows XP und Windows Server 2003 erhält man ohne administrative Rechte die folgende Fehlermeldung:

Access denied. You need administrative credentials to use Application Verifier on image <App_Name.exe> on machine <Machine_Name>. Contact your system administrator for assistance

Unter Windows Vista oder Windows Server 2008 erhält man die flogende Fehlermeldung wenn der Application Verifier nicht elevated gestartet wird:

Access denied. You need administrative credentials to use Application Verifier on image <App_Name.exe> on machine <Machine_Name> or per user verifier settings should be enabled by the administrator. Please refer to documentation for more information.

Durch einen simplen Eintrag in der Registry lässt sich aber auch als normaler Benutzer, ohne administrative Rechte, der Application Verifier nutzen, man erzeugt einen DWORD Eintrag in der Registry mit dem Wert 1
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manger\ImageExecutionOptions
Nach einem Reboot kann man nun einfach den Application Verifier auch non-elevated, als normaler Benutzer nutzen.

Die Unsitte GetCursorPos statt GetMessagePos zu verwenden

Im Endeffekt ist es der gleiche Grund warum man GetKeyState und nicht GetAsynchKeyState verwenden sollte (siehe Die Unsitte GetAsyncKeyState statt GeyKeyState zu verwenden…).

Auch hier liefert GetCursorPos die aktuelle Mauszweiger Position während GetMessagePos die Position liefert in dem Moment in dem die aktuelle Windows Nachricht eingeliefert wurde.
Oft genug wird hier kein Unterschied sein, aber durch aufwendigere Berechnungen oder gar durch eine verzögerte Abarbeitung von Windows Nachrichten (lange Zeit wurde evtl. keine Nachrichtenschleife mehr abgearbeitet), kann es sehr wohl passieren, dass ein Mausklick für eine Position eingeliefert wird, der (Millisekunden) her ist, während die aktuelle Mausposition schon Millimeter weiter ist.

Ist ein User dann richtig schnell und hektisch, kann die folgende Kombination fatale Folgen bei Verwendung von GetCursorPos haben.

  • System ist etwas beschäftigt und die Nachrichtenschleife wird nicht zeitnah abgearbeitet
  • User klickt mit Maus auf Item1
  • Die Maus wird etwas weiter bewegt und steht nun auf Item2
  • Verzögertes Abarbeiten beginnt jetzt und das Programm ermittelt mit GetCursorPos Item2 und selektiert es.
  • User drückt Entf-Taste und wundert sich 😮 dass Item2 weg ist!

Wäre GetMessagePos hier verwendet worden, wäre das korrekte Item1 gelöscht worden.

Das Verwechseln dieser beiden Funktionen hatte mir in einem Stück Software sogar einen richtigen Crash beschert. Wir hatten in einem bestimmten Fenster eigentümliche Abstürze. Er trat immer auf wenn bestimmte Leute (Kategorie Poweruser oder Übernervös) mit der Maus bestimmte Teile in der Auswertung markierten bzw. selektierten.

Ein Programmierer nutze GetMessagePos, der andere GetCursorPos für einige Kalkulationen. Meistens ist kein großer Unterschied zwischen den beiden Werten aber manchmal kam es schon vor. Effekt war aber hier, dass die eine Routine mit einem Objekt eine Funktion einleitete und an anderer Stelle ein anderes Objekt ermittelt wurde. Und gerade einige hektische Leute, die Klicken während Sie noch nicht mal genau gezielt haben, brachten es zustande, dass es einen Unterschied gab zwischen der ursprünglichen Position (bei der ersten auslösenden Nachricht) und der aktuellen Mausposition (wenn die Nachricht dann abgearbeitet wurde).

Der Handler CWnd::OnGetDlgCode hat eine falsche Signatur

Ich habe mich in der letzten Zeit viel mit den Standard-Fensterklassen beschäftigen müssen. Insbesondere war hier auch das Zusammenspiel der Control in Dialogen in meinem Fokus.
In meinem Artikel Die Return-Taste in Dialogen, eine unendliche Geschichte habe ich ja bereits einiges dazu geschrieben.

Wer Aufmerksam nun die Windows API zu WM_GETDLGCODE liest und diese mit CWnd::OnGetDlgCode vergleicht, dem wird sofort auffallen, dass die Signatur nicht mit der Windows API Beschreibung übereinstimmt.

Ich habe aufgrund dieser Signatur in der MFC immer gedacht, dass alle Controls immer eine Konstante zurückgeben. Das die Controls individuell für jede Taste entscheiden können ob sie die haben wollen oder nicht ist mir dabei glatt entgangen. Will man es also richtig machen, dann muss man auf AfxGetCurrentMessage zurückgreifen um die entsprechenden wParam und lParam Werte zu erhalten.

UINT CMyWnd::OnGetDlgCode()
{
    MSG* pMsg = AfxGetCurrentMessage();
    // virtual keycode
    UINT uiVirtKey = pMsg->wParam;
    // get keyboard message causing WM_GETDLGCODE
    MSG *pKeyboardMsg = reinterpret_cast<MSG*>(pMsg->lParam);
...
    return uiNewDlgCode;
}